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Supplementary Note 1. Experimental setup

Fig. S1 illustrates the experimental setup used for Kramers-Kronig (KK) complex orbital angular

momentum (OAM) spectrum retrieval. A continuous-wave laser at 1550 nm is collimated, and

polarization managed to match the working-axis of the spatial light modulator (SLM). The colli-

mated beam is then split into the reference path and the signal path via a beam splitter. The signal

field used in the experiment is prepared in a 4-f system with a SLM at its input plane and an iris at

its Fourier plane. Such a configuration allows for the synthesis of arbitrary complex OAM fields42.

The OAM field under test is co-axially combined with the reference beam via another beam splitter.

A neutral density filter is inserted in the reference path to adjust its optical power. At the output

of the 4-f system, the camera captures the interferogram of the signal and the reference beams.

The system is aligned on-axis before actual measurements are taken. By scanning the center of

the interferogram and calculate the average retrieval accuracy for a few known OAM fields, we

determine its center as the position that registers the highest accuracy.
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Fig S1: Experimental setup for KK complex OAM spectrum retrieval. Col.: collimator; LP: linear polarizer;

BS: beam splitter; SLM: spatial light modulator; NDF: neutral density filter.

The OAM mode basis used in this work is the ring-shaped perfect vortex mode, which can

be approximately represented as39:

E(r, ϕ) = e
− (r−r0)

2

w2
0 eilϕ (S1)

where r0, w0 are the radius and half-width of the ring, respectively. In the experiment, r0 =

750 µm, w0 = 150 µm are chosen for the OAM measurement space with topological charges

spanning from 1 to 20. When the dimensionality is enlarged to 30, the beam parameters are read-

justed to r0 = 1000 µm, w0 = 200 µm . The reference beam is collimated and can be considered

to have a Gaussian profile Er(r, ϕ) = e−r2/w2 on the plane of the camera, with a beam radius

w = 1100 µm.

Supplementary Note 2. Control of the carrier-to-signal power ratio

In this section, we discuss how we experimentally control the carrier-to-signal power ratio (CSPR)

in the OAM spectrum retrieval process. Noticeably, for different complex states, the CSPRs re-

quired to satisfy the minimum phase condition are different. In the following, we show that, by

using the arbitrary OAM field synthesis method described above42, the difference between the ex-

perimental CSPR and the minimum required CSPR is well maintained automatically for all cases.
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The signal field is generated by carving the input Gaussian beam into the target field struc-

ture through a computer-generated hologram (CGH). Since the synthesized OAM states possess

identical radial distributions, we only consider their distributions in the azimuthal angle:

Es(ϕ) =
√

P0γa(ϕ)e
iφ(ϕ), (S2)

where P0 is the power of the ring-shaped beam with flat phase profile, and γ denotes the diffraction

efficiency that generates the CGH. a(ϕ) and φ(ϕ) represent the relative amplitude and phase dis-

tributions of the target OAM states, respectively. Here the amplitude a(ϕ) is normalized such that

max{a(ϕ)} = 1 for ϕ ∈ [0, 2π). To meet the minimum phase condition, the reference amplitude

needs to be greater than the peak amplitude of the signal field31. This sets the minimum CSPR

required for the measurement:

CSPRm = 10 log
max |Es(ϕ)|2

Ps

= 10 log
Pcγ

Ps

, (S3)

where Ps =< |Es(ϕ)|2 > is the power of the signal field average in the azimuthal angle. The

difference between the experimental CSPR and the minimum required CSPR writes:

CSPR− CSPRm = 10 log
Pc

Ps

− 10 log
P0γ

Ps

= 10 log
Pc

P0γ
. (S4)

Fig S2: Experimentally measured CSPRs, minimum required CSPRs and their differences for 100 random

complex OAM states. The experimental CSPRs are slightly higher than the minimum required CSPR values,

and their differences are roughly kept the same for different cases.

We can see that the difference here only depends on the diffraction efficiency γ. By keeping

γ constant throughout the experiment, we can always ensure the experimental CSPR to be slightly
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higher than the minimum required CSPR value. In practice, we usually keep their difference

around 1 dB. Fig. S2 shows the CSPR conditions for 100 random OAM fields [one tenth of the

fields in Fig. 5(a) in the main text]. The CSPR difference is well maintained for distinct OAM

spectra.

In scenarios where the experimental CSPR needs to be changed, instead of varying the atten-

uation for the reference beam, we can also adjust the diffraction efficiency γ of the CGH. In this

way, the signal power is varied thereby effectively changing the CSPR. This digital method allows

for a more controlled adjustment of the experimental CSPR, which does not affect the alignment

of the setup. For instance, when studying the retrieval performance at different CSPR levels (cor-

responding to Fig. 4 in the main text), the signal power is decreased in steps of 0.5 dB by varying

the diffraction efficiency γ.

Supplementary Note 3. Effect of upsampling

The logarithmic operation taken in the KK retrieval procedure expands the bandwidth of the OAM

spectrum31. If the number of physical sampling points in the azimuthal angle does not cover the

broadened spectrum, digital upsampling is necessary to ensure accurate retrieval. The upsampling

is implemented on the normalized interferogram |Ei(ϕ)|2/|Er(ϕ)|2, by means of zero-padding in

the Fourier domain32. After the Hilbert transformation and necessary computations, the data is

downsampled to the original number of samples.

In the following, we show the effect of upsampling in simulation, for retrieving the same

complex OAM spectrum as in Fig. 2 of the main text. To demonstrate its full retrieval capability,

the complex field with OAM mode indices from 1 to 20 is sampled at the Nyquist frequency (41

azimuthal samples). Fig. S3(a) shows the retrieved OAM spectra without and with upsampling

of different factors. It can be seen that, without upsampling, the retrieved field cannot reproduce

perfectly the target spectrum. The accuracy of the retrieval (defined as the overlap integral of

the retrieved field and the ground truth) remains low in this case (∼ 0.81), as quantified in Fig.
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S3(b) with error = 1 − accuracy. However, only 3-times digital upsampling could significantly

boost the accuracy to 0.99, which is also manifested by the retrieved OAM spectrum. While

almost perfect retrieval can be reached by further increasing the upsampling factor to 11-times. As

shown in Fig. S3(b), the error is minimized and the accuracy is converged to unity with a higher

upsampling factor. It is worth to mention that, unlike time signals in optical communications,

the number of azimuthal samples here is a relatively small value given by the OAM measurement

spectral range. As such, the digital upsampling does not add much computational complexity to

the retrieval process.

(a) (b)

Fig S3: Effect of digital upsampling on the KK retrieval performance. (a) The amplitude and phase of the

retrieved OAM spectrum without, and with 3-times and 11-times digital upsampling. (b) The error of the

retrieved complex OAM spectrum versus the upsampling factor. The retrieval accuracy improves with the

increase of the digital upsampling.

Supplementary Note 4. Retrieval workflow and sample code

To more clearly illustrate the workflow of the KK method, a step-by-step flow chart is illustrated

as shown in Fig. S4. A sample code for simulating the retrieval of a random OAM spectrum is

also provided in https://github.com/GeorgeCravis/OAM-KK.
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Fig S4: Workflow of the KK retrieval method.

Supplementary Note 5. Details of the Fourier method

In the main text, we compare the performances of the KK and Fourier methods. Here we give the

implementation detail of the Fourier method. By taking the Fourier transform of Eq. (2) in the

main text, one yields:

F
{
|Ei(ϕ)|2

}
= F

{
A2

}
+ F

{
|Es(ϕ)|2

}
+ Ae−iθrF

{
Es(ϕ)

}
+ AeiθrF

{
E∗

s (ϕ)
}

≈ F
{
A2

}
+ Ae−iθrF

{
Es(ϕ)

}
+ AeiθrF

{
E∗

s (ϕ)
}
,

(S5)

where F
{}

denotes the Fourier transform. In essence, the Fourier method neglects the SSBI term,

as seen in the second row of Eq. (S5). Such an approximation is valid when the reference beam

is much stronger than the signal beam (large CSPR), which facilitates the retrieval of the complex

field of the signal beam. Note that F
{
A2

}
represents the zero-th order in the OAM spectrum,

while Ae−iθrF
{
Es(ϕ)

}
and AeiθrF

{
E∗

s (ϕ)
}

correspond to the positive and negative sides of the

spectrum, respectively, without overlapping each other. As such, the complex amplitude of each

OAM component of the signal beam can be obtained, simply by looking at the positive OAM

spectral components of |Ei(ϕ)|2.

Fig. S5 shows the simulated retrieval performance of the Fourier method under different

CSPR values, and is compared to the performance of KK retrieval. Here the signal field under

test is the same as in Fig. 3(a) (also Fig. 4) used in the main text. The shaded area represents

the possible range of retrieval accuracy when the relative phase between the reference and signal
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Fig S5: Retrieval performances of KK method and Fourier method under different CSPR values. The signal

field under test is the same as Fig. 3(a) in the main text. The shaded area represents the possible range of

retrieval accuracy when the relative phase between the reference and signal beam is varied. The dashed

vertical line indicates the minimum CSPR required for perfect retrieval using KK method.

beam is varied (the same effect is experimentally shown in Fig. 4(c) in the main text for KK

retrieval). Unlike being rigorous retrieval as in the KK case, the Fourier method only approximates

the ground truth. The accuracy of the Fourier retrieval gradually approaches unity with the increase

of the CSPR, as the SSBI gradually becomes less significant compared to other terms. For decent

reconstruction, the CSPR required by the Fourier method is around 10 dB higher than what is

needed for the KK method (vertical dashed line). At the threshold CSPR value for KK method, the

accuracy using the Fourier method falls between 60% to 80%. In Fig. 5 of the main text, we work

slightly above the CSPR threshold.

Supplementary Note 6. Comparison with off-axis holography

Fig. S6 shows the conceptual diagrams of various schemes related to our OAM KK diagnosis,

including the conventional off-axis holography (a), KK off-axis holography (b), the counterpart

of conventional off-axis holography in OAM (c-d), and our method (e-f) being the counterpart

of KK off-axis holography in OAM. In conventional off-axis holography, the SSBI and singnal-

reference interference parts need to be well separated in the wavevector space to ensure the precise
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retrieval of the signal full-field. Fig. S6(a) shows the critical condition where the spatial frequency

contents of SSBI and the signal shifted by the reference are tangent, setting the minimum bound

for the off-axis angle. Such a measurement is at the cost of requiring finer sampling resolution to

accommodate larger k-space information. KK off-axis holography uses the KK relation, instead

of the Fourier transform, to recover the signal full-field32. In this case, the KK relation can still

rigorously retrieve the signal at scenarios when the Fourier contents of SSBI and the shifted signal

are largely overlapped. Fig. S6(b) shows the critical condition when the SSBI and the two shifted

signal parts take the same length in kx-axis. Compared to the conventional off-axis holography,

this approach requires less sampling resolution since a smaller off-axis angle can be used.
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Fig S6: Conceptual diagrams of off-axis holography and on-axis OAM analyzers. The wavevector space

representations of (a) conventional and (b) KK off-axis holography, which use Fourier and KK relations to

reconstruct the signal field, respectively. The OAM space representations of the reference and the signal

field (c) with and (e) without a OAM guard band, whose intensity of interferograms are illustrated in (d) and

(f), respectively. On-axis OAM analyzer (d) uses Fourier method to retrieve the complex OAM spectrum and

is the OAM counterpart of conventional off-axis holography (a), while (f) uses KK retrieval and is the OAM

counterpart of KK off-axis holography (b).

In contrast, the approach we take in this work is on-axis interferometry, applied for charac-
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terizing OAM fields. The on-axis configuration is not only simpler but also allows for retrieval

with optimal sampling at Nyquist frequency. In order to rigorously retrieve both the amplitude and

phase information from intensity-only measurement, past demonstrations use phase shifting meth-

ods which require multiple shots. Alternatively, single shot retrieval is indeed possible but needs

a substantial spacing between the reference mode and the signal OAM field. This is illustrated in

Fig. S6(c), when considering the recovery of an arbitrary OAM field spanning over N modes with

indices in the range [l0+1, l0+N ], with a reference OAM mode at index lr. The OAM content after

intensity detection is shown in Fig. S6(d). The SSBI occupies the OAM modes in [−N+1, N−1],

while the desired interference terms populate the mode space [±(l0+1−lr),±(l0+N−lr)]. Similar

to off-axis holography, rigorous retrieval necessitates the desired interference to be well separated

from SSBI, setting the requirement l0+1− lr ≥ N . In other words, there must be at least (N − 1)

void modes in between the reference and the signal field of OAM bandwidth of N . As such, a large

OAM mode space is wasted, and requires two-times of Nyquist sampling to account for the guard

band. In fact, this scheme is the OAM counterpart of conventional off-axis holography depicted in

Fig. S6(a), where the transverse wavevector is replaced by the OAM mode.

To bypass the need of OAM guard band, we study in this work a new OAM full-field retrieval

method using KK relation, inspired by the KK retrieval in space32 and time28. Due to its one-

dimension nature, the use of KK in OAM actually resembles more of that in time, which has been

extensively explored in coherent communications recently. As illustrated in the main text and Fig.

S6(e), no OAM guard band is needed between the reference and signal fields. Fig. S6(f) shows

the OAM spectrum of the intensity of the interferogram, where the desired interference is largely

overlapped with SSBI. Nevertheless, once the CSPR condition and Nyquist sampling are met, the

KK retrieval can still rigorously recover the OAM full-field, as in KK off-axis holography and KK

receiver in optical communications.

In Fig. S7 we visualize the difference between our OAM KK method with KK off-axis

holography. We consider the full-field retrieval of a superimposed perfect vortex beam Es(ϕ) =

3ei5ϕ + 8ei15ϕ + 16ei30ϕ as an example. In the wavevector space, different OAM orders are clearly
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Fig S7: Visualization of the OAM KK method and KK off-axis holography in the wavevector space. The

Fourier transform of the perfect vortex field Es(ϕ) = 3ei5ϕ + 8ei15ϕ + 16ei30ϕ is shown as an example. (a)

With OAM KK method, the reference field can be at the center of the wavevector space if Gaussian beam is

used. (b) In KK off-axis holography, the wavevector of the reference field needs to be outside of the signal’s

spectrum in the wavevector space.

observed and indicated. For our OAM KK method, we use an on-axis Gaussian beam as the

reference field, corresponding to a spot in the center of the Fourier space as shown in Fig. S7(a).

Evidently, this violates the condition for KK off-axis holography, which requires the wavevector of

the reference to be outside of the signal field shown in Fig. S7(b). In fact, the reference OAM mode

in our approach can take arbitrary negative topological charge. As such, the reference field may lie

completely within the signal field in the wavevector space. Compared to KK off-axis holography,

OAM KK approach is favored when characterizing perfect vortex fields of narrow beam widths.

This is due to the fact that these fields exhibit Bessel kind of distributions in the radial direction

of the Fourier space, thus requiring a high sampling resolution when KK off-axis holography is

employed.

In the following, we also quantitatively compare the OAM measurement bandwidths of our

OAM KK method and the conventional off-axis holography, in the context of perfect vortex (PV)

beams . For OAM KK method, the number of azimuthal samples varies at different radii r, which
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can be approximated as 2πr/∆p with ∆p the pixel pitch of the camera. According to the Nyquist

sampling theorem, the highest order of the OAM modes that can be retrieved at the radius of r0 is:

lkk ≈
πr0
∆p

. (S6)

Now we consider the case of conventional off-axis holography that spatially separate the

signal from SSBI in the Fourier domain. As shown in Fig. S6(a), the SSBI bandwidth is twice as

large as that of the signal beam. To maximally utilize the bandwidth of the camera, the signal beam

is diagonally modulated by the reference beam. This yields the maximally allowed bandwidth of

the signal as32:

Bs =
2

(2 + 3
√
2)∆p

. (S7)

The bandwidth of the PV mode can be obtained by its Fourier relationship with the Bessel

mode. For the PV mode of order l and radius of r0, its Fourier transform is given by39:

ẼPV (ρ, θ) ∼ Jl(2πr0ρ)e
ilθ, (S8)

where (ρ, θ) are the radial distance and angle in polar coordinates of the Fourier plane. Jl denotes

the lth-order Bessel function of the first kind. The Bessel beam described by Eq. (S8) exhibits

concentric ring-shaped intensity distribution with its power mostly confined to the first circle. Since

J−l(2πr0ρ) = (−1)lJl(2πr0ρ), the +l and −l orders have the same intensity distributions in the

Fourier plane. Without loss of generality, we discuss only the positive OAM spectrum part. To

approximate the bandwidth of the PV mode, we take the first zero point of the Bessel beam as the

radius in the Fourier plane:

ρl = jl/2πr0, (S9)

where jl represents the first zero point of the lth-order Bessel function of the first kind. For l > 0,

jl as well as the bandwidth of the lth-order PV mode increase monotonically with l. In the range of

interest (1 ≤ l ≤ 200 in our case), the first zero of the Jl can be approximately fitted as jl ≈ l + 5.

In order to be retrieved by the conventional off-axis holography, the bandwidth of the PV mode

should be within its maximum measurement bandwidth, i.e. ρ < Bs/2. The factor of 1/2 comes
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from the fact that Bs is the diameter while ρ is the radius. As such, the highest OAM order that

can be retrieved is derived:

loa ≈
2πr0

(2 + 3
√
2)∆p

− 5. (S10)

As the +l and −l OAM orders have the same intensity distributions, the actual number of

modes that can be retrieved range from −loa to loa. In total around 2loa of OAM modes can be

measured by the conventional off-axis holography. When r0/∆p (the radius in pixel unit) is large,

the constant term in loa may be omitted. The ratio between the number of OAM modes that can be

retrieved by our KK method and conventional off-axis holography is thus given lkk/2loa ≈ 2+3
√
2

4
.

The OAM KK method outperforms the conventional off-axis holography method by a factor of

lkk/2loa ≈ 1.6 in terms of the OAM measurement bandwidth.

(a) (b)

kx kx

ky ky

95 95( ) i i
sE e eφ φφ −= + 120 120( ) i i

sE e eφ φφ −= +

Fig S8: The Fourier plane distributions of the interferograms using the conventional off-axis holography.

The signal field under test for (a) Es(ϕ) = e−i95ϕ + ei95ϕ; (b) Es(ϕ) = e−i120ϕ + ei120ϕ. The zero frequency

component in the center of the image is removed for better image contrast.

We use the following example to clearly show the performance difference between the two

methods. When r/∆p = 100, there are 656 samples in the azimuthal angle, determining the OAM

measurement bandwidth as 328 modes. However, according to Eq. (S10), the measurement range

of the conventional off-axis holography ranges from −95 to 95 order, in total 191 modes. When

the signal field is Es(ϕ) = e−i95ϕ + ei95ϕ, its Fourier plane distribution using the conventional
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off-axis holography is shown Fig. S8(a). It can be clearly seen that the circle of the SSBI is

tangential to the circle of the signal, indicating that the current situation is exactly at the limit.

The zero frequency component in the center of the image is removed for better image contrast.

Further increasing the OAM order of the signal field will result in the failure of the conventional

off-axis holographic retrieval. This is visualized in Fig. S8(b) where the signal field under test is

Es(ϕ) = e−i120ϕ + ei120ϕ. The signal and SSBI components appear to be mixed and there is also

the aliasing problem, thereby they cannot be effectively separated in the Fourier plane.

Supplementary Note 7. Choice of the radius for azimuthal sampling

In the experiment, we choose the sampling radius the same as the radius of the PV modes, where

the PV modes have the maximum intensity. However, the choice of sampling radius for PV beams

is quite flexible as long as the minimum CSPR and Nyquist sampling conditions are met. First, we

discuss the CSPR condition when varying the sampling radius. Due to different radial distributions

of the Gaussian beam (beam waist radius of 1100 µm) and perfect vortex modes (radius of 750 µm),

the CSPR value changes with the sampling radius. Fig. S9(a) and (b) shows their radial intensity

distributions and the corresponding CSPR values, respectively.

At the sampling radius of 750 µm we studied, the intensity of the Gaussian mode is around

1 dB higher than the perfect vortex mode, slightly above the minimum required CSPR. In fact,

this is almost the radius with the lowest CSPR, meaning that the minimum phase condition can be

easily satisfied at other radii to achieve the ideal retrieval. In our experiments, we still choose the

radius of 750 µm to maximize the visibility of the intensity of interferogram, so as to fully utilize

the dynamic range of the camera.

Apart from the CSPR condition, the rigorous retrieval also needs to satisfy the Nyquist sam-

pling theorem. Notably, the number of azimuthal samples varies at different radii for 2D images,

shown in Fig. S9(c). This will determine the highest OAM order that can be retrieved. As such, the

sampling radius cannot be too small otherwise the OAM measurement bandwidth will be limited,
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(a) (b) (c)

Fig S9: The effect of the sampling radius on the CSPR value and number of azimuthal samples. (a) Radial

intensity distributions of the perfect vortex mode and reference Gaussian mode used in the experiment. At

the radius of 750 µm we sample the interferogram, the intensity of the Gaussian mode is around 1 dB higher

than the perfect vortex mode. (b) Radial CSPR values corresponding to the intensity distributions in (a). (c)

The number of azimuthal samples at different radii. ∆p represents the pixel pitch size of the camera.

and this sets the limitation to perfectly retrieve fields with complex structures close to the beam

center. Fortunately, OAM fields generally have hollow structures in the beam center. In our exper-

imental setup, the resolution of the camera is 320 × 256 and the pixel pitch is ∆p = 30 µm. The

sampling radius of 750 µm gives 182 azimuthal samples.

Supplementary Note 8. Simulation on the retrieval of Laguerre-Gaussian modes

In the main text, the KK method is used to retrieve perfect vortex beams at a fixed radius. The

approach is readily to be generalized in two-dimensional space by decomposing the space into

polar coordinates, and applying KK full-field retrieval to concentric rings. Similar to the one-

dimensional case, the minimum phase condition needs to be satisfied for all theses rings. Although

this poses constraints for inner circles close to the center due to the insufficient number of sampling,

for OAM beams, their centers are generally dark resulted from the phase singularity and thus less

an issue. In the following, we showcase the reconstruction of Laguerre-Gaussian (LG) modes,

characterized by radial mode index p and azimuthal mode index l, denoted as LG(p, l).
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Fig S10: Simulated retrieval of LG modes. LG(2, 3) mode is reconstructed as an example. (a) Intensity

distribution, (b) intensity of the interferogram with a reference Gaussian beam, and (c) retrieved complex

amplitude distribution of LG(2, 3) mode.

(b)

(c)

(a)
Amplitude

Amplitude

Phase

Phase

l

l l

l

p p

p p

Fig S11: Simulated retrieval of the superposition of LG modes. The superposition of randomly weighted

LG modes with (p, l) indices in the range of 0 ≤ p ≤ 3, 1 ≤ l ≤ 4 is reconstructed. (a) The complex amplitude

distribution of the signal field. The LG mode decomposition (amplitude and phase) of (b) original and (c)

retrieved fields.
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Fig. S10 shows the simulation results on the retrieval of LG(2, 3). The intensity distribution

of the signal field and its interferogram with a reference Gaussian beam are shown in Fig. S10(a)

and (b), respectively. By applying KK retrieval in the basis of concentric circles, the LG complex

field can be reconstructed as shown in Fig. S10(c). As expected, the retrieved LG(2, 3) mode shows

3 nodal rings with alternating topological charge of ±3. In addition, we also show the retrieval of

the superposition of LG modes. The signal field under test consists of randomly weighted LG

modes with (p, l) indices in the range of 0 ≤ p ≤ 3, 1 ≤ l ≤ 4 , as shown in Fig. S11(a).

Fig. S11(b) and (c) display respectively the LG mode decomposition of the original and retrieved

superimposed LG fields, which are in excellent agreement with overlap integral reaching 99.98%.

Here the slight discrepancy is attributed to the insufficient sampling close to the beam center as

well as processing data in polar coordinate while being measured in Cartesian coordinate.
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